Infotainment

Earth’s deepest diamonds made from the remains of once-living creatures

August 23, (Agencies) | Publish Date: 8/23/2021 11:18:28 AM IST

 Earth’s deepest and most sought-after diamonds are made up of former living organisms, a new study finds. 

Ultra-rare ‘super-deep continental diamonds’ have levels of a carbon isotope that suggest they’re formed from organic matter, researchers in Australia reveal.  These super-deep diamonds, which adorn the Crown Jewels, are formed more than 250 miles (400 km) below Earth’s surface before being released during violent eruptions.  

Most natural diamonds form in the Earth’s mantle at depths of at around 100 miles (150 km), under enormously high pressures and temperatures exceeding 2,700°F. 

Diamonds, which are made entirely of carbon atoms arranged in a dense lattice, are the hardest materials on Earth.

‘This research not only helps to understand Earth’s carbon cycle, but also has the potential to unlock more secrets of the Earth’s dynamic history through tracking the past locations of mantle plumes and superplumes,’ said study author Professor Zheng-Xiang Li at Curtin University. ‘This can be achieved by mapping out the distribution of both continental and oceanic diamonds.’  

There are three main types of natural diamonds – ‘lithospheric’, ‘oceanic’ and ultra-rare ‘super-deep continental’ diamonds. 

Lithospheric, formed at depths between about 80 and 125 miles (130 and 200 km) are the most common, representing 99 per cent of all mined diamonds. 

Oceanic, meanwhile, are found on the ocean floor, while super-deep continental diamonds are formed at more than 186 miles (300 km) below the continental crust. The continental crust is the outermost layer of what’s called the lithosphere, Earth’s rocky, outermost shell.

All three diamond types are formed at different levels of the mantle with a varying mixture of organic and inorganic carbon, which can be determined by variations in a carbon isotope signature called δ13C (delta carbon thirteen).

Diamonds formed from organic carbon would suggest they originated from a living organism, because organic carbon compounds are produced in living things. 

Previous research has already suggested δ13C levels in oceanic diamonds are suggestive of an organic origin. 

According to the researchers, super-deep continental diamonds contain a ‘surprising’ amount of δ13C, similar to oceanic diamonds – and therefore suggest an organic origin too.

One of the main differences between oceanic and super-deep continental diamonds is that the latter have highly variable levels of δ13C.

The study authors think this is because super-deep cores become wrapped in inorganic crusts in the lithosphere, prior to being ejected out during eruptions. 

Both oceanic and super-deep continental diamonds form in the mantle transition zone – 250 to 372 miles (400 to 600 km) deep – using subducted organic carbon, and are then brought to the lithosphere by mantle plumes.  

‘Bringing new meaning to the old trash to treasure adage, this research discovered that the Earth’s engine actually turns organic carbon into diamonds many hundreds of kilometres below the surface,’ said study author Dr Luc Doucet at Curtin University. ‘Ballooning rocks from the Earth’s deeper mantle, called mantle plumes, then carry the diamonds back up to the Earth’s surface via volcanic eruptions for humans to enjoy as sought-after gemstones.

‘While recycling is becoming a modern-day necessity for our sustainable survival, we were particularly surprised to learn, through this research, that Mother Nature has been showing us how to recycle with style for billions of years.’ The research provides a model that explains the formation and locations of all three major types of diamonds, according to the team. 

‘This is the first time that all three major types of diamonds have been linked to mantle plumes, ballooning hot rocks driven by plate tectonics and the supercontinent cycle from deeper Earth,’ said study author Professor Li.

It remains a mystery as to why diamonds formed in the mantle transition zone are formed of recycled organic carbon only.

‘This might have something to do with the physical-chemical environment there,’ Professor Li added. ‘It is not uncommon for a new scientific discovery to raise more questions that require further investigation.’           (Mailonline)

 

Launched on December 3,1990. Nagaland Post is the first and highest circulated newspaper of Nagaland state. Nagaland Post is also the first newspaper in Nagaland to be published in multi-colour.

Desk:+91-3862-248 489, e-mail: npdesk@gmail.com Fax: +91-3862-248 500
Advt.:+91-3862-248 267, e-mail:npostadvt@gmail.com

QUICK LINKS

SUNDAY POST

Join us on

© Nagaland Post 2018. All Rights are Reserved
Designed by : 4C Plus